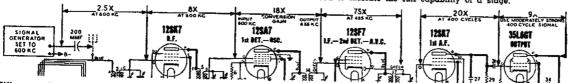

PHILLIPS PETROLEUM

ALIGNMENT PROCEDURE

- 1. Remove chassis and loop antenna from cabinet. Reconnect loop to chassis and space it approximately same distance from chassis as when installed in cabinet.
- 2. Note that there are four calibrating lines stamped into the metal dial trame. When gang condenser is fully meshed, dial pointer should be in the position indicated by first line at the left. If it is set incorrectly, release pointer clip on dial cord and reposition pointer.
- 3. Connect an output meter across the speaker voice coil or from plate of 35L6GT tube to B— through a .1 Mfd. condenser (see voltage chart for convenient B— connection).
- 4. Connect ground lead from signal generator to B— through α .25 Mfd. condenser.
- 5. Set volume control at maximum volume position and use a weak signal from the signal generator.

DUMMY ANT. IN SERIES WITH SIGNAL GENERATOR	CONNECTION OF SIG. GENERATOR OUTPUT TO RECEIVER		RECEIVER DIAL SETTING	TRIMMER NUMBER	TRIMMER DESCRIPTION	TYPE OF ADJUSTMENT
200 MMFD. Micq Condenser	Control Grid of 12SA7	455 KC	Any point where it does not affect the signal	1-2	2nd 1.F.	Adjust for maximum output. Then repeat adjustment.
				3-4	lst I.F.	
200 MMFD. Mica Condenser	External Antenna Clip on Loop Frame	1500 KC	Set pointer to 1500 KC reference line stamped into metal dial plate (first line at the right)	5	Broadcast Oscillator (Shunt)	Adjust for maximum output.
290 MMFD. Mica Condenser	External Antenna Clip on Loop Frame	1500 KC	Tune to 1500 KC Tenerator signal	6	Broadcast R.F.	Adjust for maximum output.
200 MMFD. Mica Condenser	External Antenna Clip on Loop Frame	1500 KC	Tune to 1500 KC generator signal	7	Broadcast Antenna	Adjust for maximum output.

-APPROXIMATE STAGE GAIN DATA-


Be sure R.F. and I.F. stages are accurately aligned before measuring gain. R.F. gains can be measured with a "channel" type instrument conprecautions:

Observe following

- precautions:

 1. For all gain measurements connect signal generator as shown. Use 600 KC. signal with 400 cycle modulation (use nearby frequency if local station interferes.)
- For R.F. and I.F. measurements connect negative terminal of a 3 volt battery (two 1½ valt cells in series) to A.V.C. lead and positive tersimal to B.—. This provides a definite operating point. IMPORTANT: Disconnect battery when measuring audio stage gains.
- 3. Be sure radio is carefully tuned to generator signal (use weak signal for sharp tuning.)
- 4. When using a "channel" type instrument carefully tune it for maximum output at desired frequency before making measurements.

The R.F. and I.F. stage gains shown below are less than under normal operating conditions due to the use of 3 volts fixed bias in order to establish a definite operating point. Therefore, these values are not intended to indicate the full capability of a stage.

Differences in tube characteristics, tolerance of parts, adjustment of tuned circuits, and variations of line voltage will influence stage gain. Accuracy of measurements is dependent upon careful tuning of receiver to generator signal and experience in using your test equipment. These factors may create considerable variation in gain measurements.